20 research outputs found

    3-Aroyl-1,4-diarylpyrroles inhibit chronic myeloid leukemia cell growth through an interaction with tubulin

    Get PDF
    We designed 3-aroyl-1,4-diarylpyrrole (ARDAP) derivatives as potential anticancer agents having different substituents at the 1- or 4-phenyl ring. ARDAP compounds exhibited potent inhibition of tubulin polymerization, binding of colchicine to tubulin, and cancer cell growth. ARDAP derivative 10 inhibited the proliferation of BCR/ABL-expressing KU812 and LAMA84 cells from chronic myeloid leukemia (CML) patients in blast crisis and of hematopoietic cells ectopically expressing the imatinib mesylate (IM)-sensitive KBM5-WT or its IM-resistant KBM5-T315I mutation. Compound 10 minimally affected the proliferation of normal blood cells, indicating that it may be a promising agent to overcome broad tyrosine kinase inhibitor resistance in relapsed/refractory CML patients. Compound 10 significantly decreased CML proliferation by inducing G2/M phase arrest and apoptosis via a mitochondria-dependent pathway. ARDAP 10 augmented the cytotoxic effects of IM in human CML cells. Compound 10 represents a robust lead compound to develop tubulin inhibitors with potential as novel treatments for CML

    New Indole Tubulin Assembly Inhibitors Cause Stable Arrest of Mitotic Progression, Enhanced Stimulation of Natural Killer Cell Cytotoxic Activity, and Repression of Hedgehog-Dependent Cancer

    Get PDF
    We designed 39 new 2-phenylindole derivatives as potential anticancer agents bearing the 3,4,5-trimethoxyphenyl moiety with a sulfur, ketone, or methylene bridging group at position 3 of the indole and with halogen or methoxy substituent(s) at positions 4-7. Compounds 33 and 44 strongly inhibited the growth of the P-glycoprotein-overexpressing multi-drug-resistant cell lines NCI/ADR-RES and Messa/Dx5. At 10 nM, 33 and 44 stimulated the cytotoxic activity of NK cells. At 20-50 nM, 33 and 44 arrested >80% of HeLa cells in the G2/M phase of the cell cycle, with stable arrest of mitotic progression. Cell cycle arrest was followed by cell death. Indoles 33, 44, and 81 showed strong inhibition of the SAG-induced Hedgehog signaling activation in NIH3T3 Shh-Light II cells with IC50 values of 19, 72, and 38 nM, respectively. Compounds of this class potently inhibited tubulin polymerization and cancer cell growth, including stimulation of natural killer cell cytotoxic activity and repression of Hedgehog-dependent cancer

    Toward highly potent cancer agents by modulating the c-2 group of the arylthioindole class of tubulin polymerization inhibitors

    Get PDF
    New arylthioindole derivatives having different cyclic substituents at position 2 of the indole were synthesized as anticancer agents. Several compounds inhibited tubulin polymerization at submicromolar concentration and inhibited cell growth at low nanomolar concentrations. Compounds 18 and 57 were superior to the previously synthesized 5. Compound 18 was exceptionally potent as an inhibitor of cell growth: it showed IC50 = 1.0 nM in MCF-7 cells, and it was uniformly active in the whole panel of cancer cells and superior to colchicine and combretastatin A-4. Compounds 18, 20, 55, and 57 were notably more potent than vinorelbine, vinblastine, and paclitaxel in the NCI/ADR-RES and Messa/Dx5 cell lines, which overexpress P-glycoprotein. Compounds 18 and 57 showed initial vascular disrupting effects in a tumor model of liver rhabdomyosarcomas at 15 mg/kg intravenous dosage. Derivative 18 showed water solubility and higher metabolic stability than 5 in human liver microsomes

    New pyrrole derivatives with potent tubulin polymerization inhibiting activity as anticancer agents including hedgehog-dependent cancer

    Get PDF
    We synthesized 3-aroyl-1-arylpyrrole (ARAP) derivatives as potential anticancer agents having different substituents at the pendant 1-phenyl ring. Both the 1-phenyl ring and 3-(3,4,5-trimethoxyphenyl)carbonyl moieties were mandatory to achieve potent inhibition of tubulin polymerization, binding of colchicine to tubulin, and cancer cell growth. ARAP 22 showed strong inhibition of the P-glycoprotein-overexpressing NCI-ADR-RES and Messa/Dx5MDR cell lines. Compounds 22 and 27 suppressed in vitro the Hedgehog signaling pathway, strongly reducing luciferase activity in SAG treated NIH3T3 Shh-Light II cells, and inhibited the growth of medulloblastoma D283 cells at nanomolar concentrations. ARAPs 22 and 27 represent a new potent class of tubulin polymerization and cancer cell growth inhibitors with the potential to inhibit the Hedgehog signaling pathway

    Current Acquaintance on Agronomic Biofortification to Modulate the Yield and Functional Value of Vegetable Crops: A Review

    No full text
    Fresh vegetables and fruits have always been the mainstays of good nutrition as providers of fiber, beneficial phytochemicals (such as vitamins and phenolic compounds), and minerals. Today and in the future, biofortification is a promising strategy to increase the concentration of these compounds. Considering the importance of minerals in human health, the enrichment of fresh produce for consumption has been considered through specific agronomic approaches. This review discusses, in detail, the latest findings on vegetable agronomic biofortification, aimed at increasing the concentration of crucial minerals, such as iron (Fe), zinc (Zn), iodine (I), selenium (Se), molybdenum (Mo), and silicon (Si), in edible portions, focusing on the direct and indirect effects of this strategy. Although agronomic biofortification is considered a feasible technique, the approach is complex due to the many interactions between the microelement bioavailability for both plants and consumers. Therefore, the effects of biofortification on human health and the influence of beneficial and antinutritional compounds were discussed in detail to analyze the advantages and disadvantages of this practice

    Current Acquaintance on Agronomic Biofortification to Modulate the Yield and Functional Value of Vegetable Crops: A Review

    No full text
    Fresh vegetables and fruits have always been the mainstays of good nutrition as providers of fiber, beneficial phytochemicals (such as vitamins and phenolic compounds), and minerals. Today and in the future, biofortification is a promising strategy to increase the concentration of these compounds. Considering the importance of minerals in human health, the enrichment of fresh produce for consumption has been considered through specific agronomic approaches. This review discusses, in detail, the latest findings on vegetable agronomic biofortification, aimed at increasing the concentration of crucial minerals, such as iron (Fe), zinc (Zn), iodine (I), selenium (Se), molybdenum (Mo), and silicon (Si), in edible portions, focusing on the direct and indirect effects of this strategy. Although agronomic biofortification is considered a feasible technique, the approach is complex due to the many interactions between the microelement bioavailability for both plants and consumers. Therefore, the effects of biofortification on human health and the influence of beneficial and antinutritional compounds were discussed in detail to analyze the advantages and disadvantages of this practice

    New 6- and 7-heterocyclyl-1H-indole derivatives as potent tubulin assembly and cancer cell growth inhibitors

    No full text
    We designed new 3-arylthio- and 3-aroyl-1H-indole derivatives 3–22 bearing a heterocyclic ring at position 5, 6 or 7 of the indole nucleus. The 6- and 7-heterocyclyl-1H-indoles showed potent inhibition of tubulin polymerization, binding of colchicine to tubulin and growth of MCF-7 cancer cells. Compounds 13 and 19 inhibited a panel of cancer cells and the NCI/ADR-RES multidrug resistant cell line at low nanomolar concentrations. Compound 13 at 50 nM induced 77% G2/M in HeLa cells, and at 20 nM caused 50% stable arrest of mitosis. As an inhibitor of HepG2 cells (IC50= 20 nM), 13 was 4-fold superior to 19. Compound 13 was a potent inhibitor of the human U87MG glioblastoma cells at nanomolar concentrations, being nearly one order of magnitude superior to previously reported arylthioindoles. The present results highlight 13 as a robust scaffold for the design of new anticancer agents

    Thieno[3,2-b]pyrrole-5-carboxamides as New Reversible Inhibitors of Histone Lysine Demethylase KDM1A/LSD1. Part 2: Structure-Based Drug Design and Structure-Activity Relationship

    No full text
    Lysine specific demethylase 1 KDM1A (LSD1) regulates histone rnethylation and it is increasingly recognized as a potential therapeutic target in oncology. We report on a high -throughput screening campaign performed on KDM1A/CoREST, using a time-resolved fluorescence resonance energy transfer (TR-FRET) technology, to identify reversible inhibitors. The screening led to 115 hits for which we determined biochemical IC50, thus identifying four chemical series. After data analysis, we have prioritized the chemical series of N-pheny1-4H-thieno [3, 2-b]pyrrole-5-carboxamide for which we obtained X-ray structures of the most potent hit (compound 19, IC50 = 2.9 mu M) in complex with the enzyme. Initial expansion of this chemical class, both modifying core structure and decorating benzamide moiety, was directed toward the definition of the moieties responsible for the interaction with the enzyme. Preliminary optimization led to compound 90, which inhibited the enzyme with a submicromolar IC50 (0.162 mu M), capable of inhibiting the target in cells
    corecore